Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

نویسندگان

  • J. P. Allain
  • H. W. Kugel
  • B. Heim
  • R. Kaita
  • R. Majeski
چکیده

Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40– 60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasmafacing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured. 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of a liquid lithium curtain as the first wall in the Fusion Experimental Breeder (FEB-E) reactor plasma

We study the effects of a liquid lithium curtain used as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). Relationships were obtained between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution, and fusion power production. Results indicate that, under normal operation, the evaporation of liquid lithium ...

متن کامل

Wetting properties of liquid lithium on select fusion relevant surfaces

Research into lithium as a plasma facing component material has illustrated its ability to engender low recycling operation at the plasma edge leading to higher energy confinement times. Introducing lithium into a practical fusion device would almost certainly require the lithium to be flowing to maintain a clean lithium surface for gettering. Several conceptual designs have been proposed, like...

متن کامل

Deuterium ion-surface interactions of liquid-lithium thin films on micro-porous molybdenum substrates

Lithium has been utilized to enhance the plasma performance for a variety of fusion devices such as TFTR, CDX-U and NSTX. Lithium in both the solid and liquid states has been studied extensively for its role in hydrogen retention and reduction in sputtering yield. A liquid lithium diverter (LLD) was recently installed in the National Spherical Torus Experiment (NSTX) fusion reactor to investiga...

متن کامل

Free surface stability of liquid metal plasma facing components

An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh–Taylor-like and Kelvin–Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasmafacing structures (TELS) chamber at the Un...

متن کامل

Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

Article history: Available online xxxx Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to selfpropel lithium through a series of trenches. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009